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Abstract

The problem of a multi-material composite wedge under a normal and shear loading at its external faces is con-

sidered with a variable separable solution. The stress and displacement fields are determined using the equilibrium

conditions for forces and moments and the appropriate Airy stress function. The infinite isotropic wedge under shear

and normal distributed loading along its external faces is examined for different values of the order n of the radial

coordinate r. The proposed solution is applied to the elastostatic problem of a composite isotropic k-materials infinite

wedge under distributed loading along its external faces. Applications are made in the case of the two-materials

composite wedge under linearly distributed loading along its external faces and in the case of a three-materials com-

posite wedge under a parabolically distributed loading along its external faces.
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1. Introduction

The plane elasticity problem of a composite body consisting of a number of dissimilar wedges of

arbitrary angles such that all interfaces coalesce at the same vertex O (Fig. 1) is in great interest in many

engineering fields including automotive, microelectronics, aerospace, maritime, and nuclear engineering. In

addition, when considering the strength of a composite, a very important part that has to be studied is the

interface between two dissimilar materials. First Williams (1952) using the Airy stress function, developed
the eigen-function expansion method in order to study the single-material wedge for several combinations

of homogeneous boundary conditions. A lot of other investigations concerning material and geometric

complications have followed by Bogy (1968, 1970), Dundurs (1969), Gdoutos and Theocaris (1975),
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Fig. 1. Composite multi-material wedge under distributed loads at its faces.
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Theocaris et al. (1979), Dempsey and Sinclair (1981), Ting (1984, 1996), Lau and Delale (1988), Dundurs

and Markenscoff (1989), Barber (1992), Pageau et al. (1994), Joseph and Zhang (1998), Mantic et al. (1997),

Horgan (1998) and Chen (1998).

Our study considers an infinite isotropic wedge under a polynomial-distributed loading (Fig. 1) at its

external faces. It is also supposed that the distributed loading along the faces fulfills the self-similarity

condition given by
NðarÞ ¼ fNðaÞNðrÞ; fNð1Þ ¼ 1; a 2 R ð1Þ

in the case of a normal distributed loading; and
T ðarÞ ¼ fT ðaÞT ðrÞ; fT ð1Þ ¼ 1; a 2 R ð2Þ

in the case of a shear distributed loading, where fN ðaÞ and fT ðaÞ are the similarity functions and NðrÞ, T ðrÞ
are polynomials.

It is proved that the polynomials NðrÞ and T ðrÞ in order to satisfy the self-similarity relations (1) and

(2), must be mononyms of the form
NðrÞ ¼ Nrn; n ¼ 0;�1;�2; . . .

T ðrÞ ¼ Trn; n ¼ 0;�1;�2; . . .
ð3Þ
where N , T constants, and n the order of the r.
The self-similarity property of the loading and the non-existence of a ‘‘characteristic dimension’’ in the

geometry of the problem, enforces a variable-separable form of the stress field, thus
rijðar; hÞ ¼ fijðaÞrijðr; hÞ

and for a ¼ 1=r, we have
rijðr; hÞ ¼ hijðrÞgijðhÞ; i; j ¼ r; h ð4Þ
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where
hijðrÞ ¼ fij
1

r

� �� ��1

; gijðhÞ ¼ rijð1; hÞ
From relation (4), the distributed loads (3) along the faces h ¼ a and h ¼ b of the wedge, take the form

(i) shear loading
TaðrÞ ¼ Tarn ¼ rrhðr; h ¼ aÞ
TbðrÞ ¼ Tbrn ¼ rrhðr; h ¼ bÞ

ð5Þ
thus
hrh ¼ rn; Ta ¼ grhðh ¼ aÞ; Tb ¼ grhðh ¼ bÞ ð6Þ
(ii) normal loading
NaðrÞ ¼ Narn ¼ rhhðr; h ¼ aÞ
NbðrÞ ¼ Nbrn ¼ rhhðr; h ¼ bÞ

ð7Þ
thus
hhhðrÞ ¼ rn; Na ¼ ghhðh ¼ aÞ; Nb ¼ ghhðh ¼ bÞ ð8Þ
Using the equilibrium conditions for forces and moments, and for different values of n, the unknown

functions hijðrÞ in the stress field expressions are determined. Selecting appropriate terms from the Michell

tables (Michell, 1899; Barber, 1992), the Airy stress function, the gijðhÞ functions and the stress fields are

easily obtained. Finally applying the boundary conditions, the unknown coefficients of the stress fields are

determined in the cases of shear distributed loading, normal distributed loading and uniformly distributed

loading ðn ¼ 0Þ.
The advantages of the proposed solution are

i(i) The use of self-similarity property in the wedge elastostatic problem not only for concentrated loads at

the apex but also for distributed loads along the faces of the wedge.

(ii) The determination of the stress function from the Michell tables (Michell, 1899) according to the re-

quired order of r because of the self-similarity property.

The contribution of our study relative to other investigations (Theocaris et al., 1979; Dempsey and

Sinclair, 1981; Pageau et al., 1994; Ting, 1996; Mantic et al., 1997; Joseph and Zhang, 1998; Chen, 1998) is

the solution of the elastostatic problem of a multi-material wedge and the determination of the stress and
displacement fields not close to the singular point at the apex of the wedge, instead of just the determination

of the order of singularity at the apex.

An analytical solution is proposed, based on the self-similarity property (variable-separable formula-

tions). Using the superposition principle, the stress and displacement fields are determined analytically in

the case of a multi-material wedge with different material properties under a polynomial distributed loading

along the external faces of the wedge.

The proposed solution is applied to the elastostatic problem of an infinite multi-material isotropic wedge

under distributed loading along its faces. Applications are made in the case of a composite two-materials
infinite wedge under a linear distributed loading along its external faces and in the case of a three-material

infinite isotropic wedge under a parabolic ðn ¼ 2Þ distributed loading along its external faces.



Fig. 2. Wedge under distributed shear loads at its faces.
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2. Shear distributed loading

Using the equilibrium conditions for forces along the x–x and y–y axes (Fig. 2) for the element ðAA0B0BÞ
and taking into account relations (5) and (6), it is obtained
hrrðrÞ ¼ hrhðrÞ ¼ rn ð9Þ
Z b

a
grrðhÞ cos hdh ¼ Ta cos a� Tb cos b

nþ 1
þ
Z b

a
grhðhÞ sin hdh; n 6¼ �1

Z b

a
grrðhÞ sin hdh ¼ Ta sin a� Tb sin b

nþ 1
�
Z b

a
grhðhÞ cos hdh; n 6¼ �1

ð10Þ
From the equilibrium of moments at the element ðAA0B0BÞ, it is also obtained
Z b

a
grhðhÞdh ¼ 0 ð11Þ
From the Michell tables (Michell, 1899; Barber, 1992) we can select terms in order to formulate the Airy

stress function which ensures the required order of r. Because of the use of the Michell tables we distinguish

the following cases.

2.1. The case n ¼ �2

From relations (5), (6) and (9), it is obtained
TaðrÞ ¼
Ta
r2

; TbðrÞ ¼
Tb
r2

; hrrðrÞ ¼ hrhðrÞ ¼
1

r2
ð12Þ
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The corresponding Airy stress function is
Mðr; hÞ ¼ C04 ln r þ C0
03hþ C23 cosð2hÞ þ C0

23 sin 2hð Þ ð13Þ
The boundary conditions of the problem are
h ¼ a ¼ � h0
2
; rrh r;

�
� h0

2

�
¼ Ta

r2
; rhh r;

�
� h0

2

�
¼ 0

h ¼ b ¼ h0
2
; rrh r;

h0
2

� �
¼ Tb

r2
; rhh r;

h0
2

� �
¼ 0

ð14Þ
The stress and the displacement fields satisfying the stress function (13), are
rrrðr; hÞ ¼
C04

r2
� 4C23

r2
cosð2hÞ � 4C0

23

r2
sinð2hÞ

rrhðr; hÞ ¼
C0

03

r2
� 2C23

r2
sinð2hÞ þ 2C0

23

r2
cosð2hÞ

rhhðr; hÞ ¼ �C04

r2

ð15Þ
and
2lurðr; hÞ ¼ �C04

r
þ ðjþ 1ÞC23

r
cosð2hÞ þ ðjþ 1ÞC0

23

r
sinð2hÞ

2luhðr; hÞ ¼ �C0
03

r
� ðj� 1ÞC23

r
sinð2hÞ þ ðj� 1ÞC0

23

r
cosð2hÞ

ð16Þ
where l is the shear modulus, j ¼ ð3� 4mÞ for plane strain, j ¼ ð3� mÞ=ð1þ mÞ for generalized plane stress,

m being the Poisson�s ratio; while the unknown coefficients C04, C
0
03, C23, C

0
23 derived from the boundary

conditions (14) and the equilibrium of moments (11), are
C04 ¼ 0; C0
03 ¼ �ðTa þ TbÞ tan h0

2ðh0 � tan h0Þ

C23 ¼
Ta � Tb
4 sin h0

; C0
23 ¼

ðTa þ TbÞh0
4 cos h0ðh0 � tan h0Þ

ð17Þ
where
sinð2h0Þ 6¼ 0; h0 � tan h0 6¼ 0; h0 ¼ b� a:
Using relations (15) for the functions gijðhÞ ði; j ¼ r; hÞ and relations (17), relations (10) are satisfied.

2.2. The case n ¼ �m6� 3

From relations (5), (6) and (9), it is obtained
TaðrÞ ¼
Ta
rm

; TbðrÞ ¼
Tb
rm

; hrrðrÞ ¼ hrhðrÞ ¼
1

rm
ð18Þ
The corresponding Airy stress function is
Mðr; hÞ ¼ Cm3
cosðmhÞ
rm�2

þ Cðm�2Þ4
cos½ðm� 2Þh�

rm�2
þ C0

m3

sinðmhÞ
rm�2

þ C0
ðm�2Þ4

sin½ðm� 2Þh�
rm�2

;

m ¼ �nP 3 ð19Þ
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The boundary conditions of the problem are
h ¼ a ¼ � h0
2
; rrh r;

�
� h0

2

�
¼ Ta

rm
; rhh r;

�
� h0

2

�
¼ 0

h ¼ b ¼ h0
2
; rrh r;

h0
2

� �
¼ Tb

rm
; rhh r;

h0
2

� �
¼ 0

ð20Þ
The stress and the displacement fields satisfying the stress function (19), are
rrrðr; hÞ ¼ � Cm3ðmþ 2Þðm� 1Þ cosðmhÞ
rm

� Cðm�2Þ4ðm� 2Þðm� 1Þ cos½ðm� 2Þh�
rm

� C0
m3ðmþ 2Þðm� 1Þ sinðmhÞ

rm
� C0

ðm�2Þ4ðm� 2Þðm� 1Þ sin½ðm� 2Þh�
rm

rrhðr; hÞ ¼ � Cm3mðm� 1Þ sinðmhÞ
rm

� Cðm�2Þ4ðm� 2Þðm� 1Þ sin½ðm� 2Þh�
rm

þ C0
m3mðm� 1Þ cosðmhÞ

rm
þ C0

ðm�2Þ4ðm� 2Þðm� 1Þ cos½ðm� 2Þh�
rm

rhhðr; hÞ ¼ Cm3ðm� 1Þðm� 2Þ cosðmhÞ
rm

þ Cðm�2Þ4ðm� 2Þðm� 1Þ cos½ðm� 2Þh�
rm

þ C0
m3ðm� 1Þðm� 2Þ sinðmhÞ

rm
þ C0

ðm�2Þ4ðm� 2Þðm� 1Þ sin½ðm� 2Þh�
rm

ð21Þ
and
2lurðr; hÞ ¼
1

rm�1
½Cm3ðjþ m� 1Þ cosðmhÞ þ Cðm�2Þ4ðm� 2Þ cos½ðm� 2Þh� þ C0

m3ðjþ m� 1Þ sinðmhÞ

þ C0
ðm�2Þ4ðm� 2Þ sin½ðm� 2Þh��

2luhðr; hÞ ¼
1

rm�1
½�Cm3ðj� mþ 1Þ sinðmhÞ þ Cðm�2Þ4ðm� 2Þ sin½ðm� 2Þh� þ C0

m3ðj� mþ 1Þ cosðmhÞ

� C0
ðm�2Þ4ðm� 2Þ cos½ðm� 2Þh��

ð22Þ

where the unknown coefficients Cm3, C

0
m3, Cðm�2Þ4, C

0
ðm�2Þ4 are derived from the boundary conditions (20)

using (21). Thus
Cm3 ¼
ðTa � TbÞ cos m h0

2
� h0

� �
2ðm� 1Þððm� 1Þ sin h0 þ sin½ðm� 1Þh0�Þ

C0
m3 ¼

ðTa þ TbÞ sin m h0
2
� h0

� �
2ðm� 1Þðsin½ðm� 1Þh0� � ðm� 1Þ sin h0Þ

Cðm�2Þ4 ¼ �
ðTa � TbÞ cos m h0

2

� �
2ðm� 1Þððm� 1Þ sin h0 þ sin½ðm� 1Þh0�Þ

C0
ðm�2Þ4 ¼ �

ðTa þ TbÞ sin m h0
2

� �
2ðm� 1Þðsin½ðm� 1Þh0� � ðm� 1Þ sin h0Þ

ð23Þ
where
sin½ðm� 1Þh0� 6¼ �ðm� 1Þ sin h0; h0 ¼ b� a
Using relations (21) for the functions gijðhÞ ði; j ¼ r; hÞ and relations (23), the equilibrium conditions (10)
and (11), are satisfied.
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2.3. The case nP1

From relations (5), (6) and (9), it is obtained
T ðrÞ ¼ Tarn; TbðrÞ ¼ Tbrn; hrrðrÞ ¼ hrhðrÞ ¼ rn ð24Þ

The corresponding Airy stress function is
Mðr; hÞ ¼ Cn1rnþ2 cosðnhÞ þ C0
n1r

nþ2 sinðnhÞ þ Cðnþ2Þ2rnþ2 cos½ðnþ 2Þh� þ C0
ðnþ2Þ2r

nþ2 sin½ðnþ 2Þh� ð25Þ
The boundary conditions of the problem are
h ¼ a ¼ � h0
2
; rrh r;

�
� h0

2

�
¼ Tarn; rhh r;

�
� h0

2

�
¼ 0

h ¼ b ¼ h0
2
; rrh r;

h0
2

� �
¼ Tbrn; rhh r;

h0
2

� �
¼ 0

ð26Þ
Correspondingly the stress and the displacement fields, are
rrrðr; hÞ ¼ � Cn1ðnþ 1Þðn� 2Þrn cosðnhÞ � C0
n1ðnþ 1Þðn� 2Þrn sinðnhÞ

� Cðnþ2Þ2ðnþ 2Þðnþ 1Þrn cos½ðnþ 2Þh� � C0
ðnþ2Þ2ðnþ 2Þðnþ 1Þrn sin½ðnþ 2Þh�

rrhðr; hÞ ¼ Cn1nðnþ 1Þrn sinðnhÞ � C0
n1nðnþ 1Þrn cosðnhÞ þ Cðnþ2Þ2ðnþ 2Þðnþ 1Þrn sin½ðnþ 2Þh�

� C0
ðnþ2Þ2ðnþ 2Þðnþ 1Þrn cos½ðnþ 2Þh�

rhhðr; hÞ ¼ Cn1ðnþ 1Þðnþ 2Þrn cosðnhÞ þ C0
n1ðnþ 1Þðnþ 2Þrn sinðnhÞ

þ Cðnþ2Þ2ðnþ 2Þðnþ 1Þrn cos½ðnþ 2Þh� þ C0
ðnþ2Þ2ðnþ 2Þðnþ 1Þrn sin½ðnþ 2Þh�

ð27Þ
and
2lurðr; hÞ ¼ ðj� n� 1Þrnþ1½Cn1 cosðnhÞ þ C0
n1 sinðnhÞ�

� ðnþ 2Þrnþ1fCðnþ2Þ2 cos½ðnþ 2Þh� þ C0
ðnþ2Þ2 sin½ðnþ 2Þh�g

2luhðr; hÞ ¼ ðjþ nþ 1Þrnþ1½Cn1 sinðnhÞ � C0
n1 cosðnhÞ�

þ ðnþ 2Þrnþ1fCðnþ2Þ2 sin½ðnþ 2Þh� � C0
ðnþ2Þ2 cos½ðnþ 2Þh�g

ð28Þ
Using the boundary conditions (26) and the stress field (27), the unknown coefficients Cn1, C
0
n1, Cðnþ2Þ2 and

C0
ðnþ2Þ2, are
Cn1 ¼
ðTa � TbÞ cos ðnþ 2Þ h0

2

� �
2ðnþ 1Þðsin½ðnþ 1Þh0� þ ðnþ 1Þ sin h0Þ

C0
n1 ¼

ðTa þ TbÞ sin ðnþ 2Þ h0
2

� �
2ðnþ 1Þðsin½ðnþ 1Þh0� � ðnþ 1Þ sin h0Þ

Cðnþ2Þ2 ¼ �
ðTa � TbÞ cos n h0

2

� �
2ðnþ 1Þðsin½ðnþ 1Þh0� þ ðnþ 1Þ sin h0Þ

C0
ðnþ2Þ2 ¼ �

ðTa þ TbÞ sin n h0
2

� �
2ðnþ 1Þðsin½ðnþ 1Þh0� � ðnþ 1Þ sin h0Þ

ð29Þ
where
sin½ðnþ 1Þh0� 6¼ �ðnþ 1Þ sin h0; h0 ¼ b� a
The equilibrium conditions (10) and (11) are satisfied using relations (27) and (29).
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3. Normal distributed loading

From the equilibrium of moments at the element ðAA0B0BÞ (Fig. 3), it is obtained
hrhðrÞ ¼ rn ð30Þ
Z b

a
grhðhÞdh ¼ Na � Nb

nþ 2
; n 6¼ �2 ð31Þ
In a similar way from the equilibrium of forces along the x–x and y–y axes for the element ðAA0B0BÞ (Fig. 3)
and taking into consideration relations (7) and (8), we have
hrrðrÞ ¼ hhhðrÞ ¼ rn ð32Þ
Z b

a
grrðhÞ cos hdh ¼ �Na sin a� Nb sin b

nþ 1
þ
Z b

a
grhðhÞ sin hdh; n 6¼ �1

Z b

a
grrðhÞ sin hdh ¼ Na cos a� Nb cos b

nþ 1
�
Z b

a
grhðhÞ cos hdh; n 6¼ �1

ð33Þ
Using the Michell tables as in Section 2, we distinguish the following cases.

3.1. The case n ¼ �m6� 3

From relations (7), (8), (30) and (32), it is obtained
NaðrÞ ¼
Na

rm
; NbðrÞ ¼

Nb

rm
; hrrðrÞ ¼ hrhðrÞ ¼ hhhðrÞ ¼

1

rm
ð34Þ
Fig. 3. Wedge under distributed normal loads at its faces.
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The Airy stress function ensuring the required order of r, is
Mðr; hÞ ¼ Cm3
cosðmhÞ
rm�2

þ Cðm�2Þ4
cos½ðm� 2Þh�

rm�2
þ C0

m3

sinðmhÞ
rm�2

þ C0
ðm�2Þ4

sin½ðm� 2Þh�
rm�2

;

n ¼ �m6 � 3 ð35Þ
The boundary conditions are
h ¼ a ¼ � h0
2
; rrh r;

�
� h0

2

�
¼ 0; rhh r;

�
� h0

2

�
¼ Na

rm

h ¼ b ¼ h0
2
; rrh r;

h0
2

� �
¼ 0; rhh r;

h0
2

� �
¼ Nb

rm

ð36Þ
The stress and displacement fields derived from the stress function (35), are
rrrðr; hÞ ¼ � ðmþ 2Þðm� 1ÞCm3
cosðmhÞ

rm
� ðm� 2Þðm� 1ÞCðm�2Þ4

cos½ðm� 2Þh�
rm

� ðmþ 2Þðm� 1ÞC0
m3

sinðmhÞ
rm

� ðm� 2Þðm� 1ÞC0
ðm�2Þ4

sin½ðm� 2Þh�
rm

rrhðr; hÞ ¼ � mðm� 1ÞCm3
sinðmhÞ

rm
� ðm� 2Þðm� 1ÞCðm�2Þ4

sin½ðm� 2Þh�
rm

þ mðm� 1ÞC0
m3

cosðmhÞ
rm

þ ðm� 2Þðm� 1ÞC0
ðm�2Þ4

cos½ðm� 2Þh�
rm

rhhðr; hÞ ¼ ðm� 1Þðm� 2ÞCm3
cosðmhÞ

rm
þ ðm� 1Þðm� 2ÞCðm�2Þ4

cos½ðm� 2Þh�
rm

þ ðm� 1Þðm� 2ÞC0
m3

sinðmhÞ
rm

þ ðm� 1Þðm� 2ÞC0
ðm�2Þ4

sin½ðm� 2Þh�
rm

ð37Þ
and
2lurðr; hÞ ¼
1

rm�1
½Cm3ðjþ m� 1Þ cosðmhÞ þ Cðm�2Þ4ðm� 2Þ cos½ðm� 2Þh� þ C0

m3ðjþ m� 1Þ sinðmhÞ

þ C0
ðm�2Þ4ðm� 2Þ sin½ðm� 2Þh��

2luhðr; hÞ ¼
1

rm�1
½�Cm3ðj� mþ 1Þ sinðmhÞ þ Cðm�2Þ4ðm� 2Þ sin½ðm� 2Þh� þ C0

m3ðj� m� 1Þ cosðmhÞ

� C0
ðm�2Þ4ðm� 2Þ cos½ðm� 2Þh��

ð38Þ
where the unknown coefficients Cm3, C
0
m3, Cðm�2Þ4, C

0
ðm�2Þ4 are calculated using the boundary conditions (36)

and the relations (37), thus
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Cm3 ¼ �
ðNa þ NbÞ sin ðm� 2Þ h0

2

� �
2ðm� 1Þððm� 1Þ sin h0 þ sin½ðm� 1Þh0�Þ

C0
m3 ¼ �

ðNa � NbÞ cos ðm� 2Þ h0
2

� �
2ðm� 1Þððm� 1Þ sin h0 � sin½ðm� 1Þh0�Þ

Cðm�2Þ4 ¼
mðNa þ NbÞ sin m h0

2

� �
2ðm� 1Þðm� 2Þððm� 1Þ sin h0 þ sin½ðm� 1Þh0�Þ

C0
ðm�2Þ4 ¼

mðNa � NbÞ cos m h0
2

� �
2ðm� 1Þðm� 2Þððm� 1Þ sin h0 � sin½ðm� 1Þh0�Þ

ð39Þ
where
sin½ðm� 1Þh0� 6¼ �ðm� 1Þ sin h0; h0 ¼ b� a:
Using relations (37) for the functions gijðhÞ ði; j ¼ r; hÞ and relations (39), the equilibrium conditions (31)

and (33) are satisfied.
3.2. The case nP1

From relations (7), (8), (30) and (32), we have
NaðrÞ ¼ Narn; NbðrÞ ¼ Nbrn; hrrðrÞ ¼ hrhðrÞ ¼ hhhðrÞ ¼ rn ð40Þ
The Airy stress function ensuring the order of r, is
Mðr; hÞ ¼ Cn1rnþ2 cosðnhÞ þ C0
n1r

nþ2 sinðnhÞ þ Cðnþ2Þ2rnþ2 cos½ðnþ 2Þh� þ C0
ðnþ2Þ2r

nþ2 sin½ðnþ 2Þh� ð41Þ
The boundary conditions are
h ¼ a ¼ � h0
2
; rrh r;

�
� h0

2

�
¼ 0; rhh r;

�
� h0

2

�
¼ Narn

h ¼ b ¼ h0
2
; rrh r;

h0
2

� �
¼ 0; rhh r;

h0
2

� �
¼ Nbrn

ð42Þ
The stress and displacement fields obtained from the stress function (41), are
rrrðr; hÞ ¼ � ðnþ 1Þðn� 2ÞCn1rn cosðnhÞ � ðnþ 1Þðn� 2ÞC0
n1r

n sinðnhÞ

� ðnþ 1Þðnþ 2ÞCðnþ2Þ2rn cos½ðnþ 2Þh� � ðnþ 1Þðnþ 2ÞC0
ðnþ2Þ2r

n sin½ðnþ 2Þh�

rrhðr; hÞ ¼ nðnþ 1ÞCn1rn sinðnhÞ � nðnþ 1ÞC0
n1r

n cosðnhÞ þ ðnþ 1Þðnþ 2ÞCðnþ2Þ2rn sin½ðnþ 2Þh�

� ðnþ 1Þðnþ 2ÞC0
ðnþ2Þ2r

n cos½ðnþ 2Þh�

rhhðr; hÞ ¼ ðnþ 1Þðnþ 2ÞCn1rn cosðnhÞ þ ðnþ 1Þðnþ 2ÞC0
n1r

n sinðnhÞ

þ ðnþ 1Þðnþ 2ÞCðnþ2Þ2rn cos½ðnþ 2Þh� þ ðnþ 1Þðnþ 2ÞC0
ðnþ2Þ2r

n sin½ðnþ 2Þh�

ð43Þ
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and
2lurðr; hÞ ¼ rnþ1 ðj
n

� n� 1Þ Cn1 cosðnhÞ
h

þ C0
n1 sinðnhÞ

i

� ðnþ 2Þ Cðnþ2Þ2 cos½ðn
h

þ 2Þh� þ C0
ðnþ2Þ2 sin½ðnþ 2Þh�

io

2luhðr; hÞ ¼ rnþ1 ðj
n

þ nþ 1Þ Cn1 sinðnhÞ
h

� C0
n1 cosðnhÞ

i

þ ðnþ 2Þ Cðnþ2Þ2 sin½ðn
h

þ 2Þh� � C0
ðnþ2Þ2 cos½ðnþ 2Þh�

io
ð44Þ
where the unknown coefficients Cn1, C
0
n1, Cðnþ2Þ2 and C0

ðnþ2Þ2 are obtained from the boundary conditions (42)

and the stress field (43), thus
Cn1 ¼
ðNa þ NbÞ sin ðnþ 2Þ h0

2

� �
2ðnþ 1Þ sin ðnþ 1Þh0½ � þ ðnþ 1Þ sin h0ð Þ

C0
n1 ¼ �

ðNa � NbÞ cos ðnþ 2Þ h0
2

� �
2ðnþ 1Þ sin ðnþ 1Þh0½ � � ðnþ 1Þ sin h0ð Þ

Cðnþ2Þ2 ¼ �
nðNa þ NbÞ sin n h0

2

� �
2ðnþ 1Þðnþ 2Þ sin ðnþ 1Þh0½ � þ ðnþ 1Þ sin h0ð Þ

C0
ðnþ2Þ2 ¼

nðNa � NbÞ cos n h0
2

� �
2ðnþ 1Þðnþ 2Þ sin ðnþ 1Þh0½ � � ðnþ 1Þ sin h0ð Þ

ð45Þ
where
sin½ðnþ 1Þh0� 6¼ �ðnþ 1Þ sin h0; h0 ¼ b� a:
Using relations (43) for the functions gijðhÞ ði; j ¼ r; hÞ and relations (45), the equilibrium conditions (31)

and (33) are satisfied.
4. Uniformly distributed loading (n = 0)

In the case of uniformly distributed loading (Fig. 4), relations (5) and (7) take the form
TaðrÞ ¼ Ta ¼ rrhðr; aÞ; NaðrÞ ¼ Na ¼ rhhðr; aÞ
TbðrÞ ¼ Tb ¼ rrhðr; bÞ; NbðrÞ ¼ Nb ¼ rhhðr; bÞ

ð46Þ
From the equilibrium of moments at the element ðOABÞ (Fig. 4), we have
rrhðr; hÞ ¼ grhðhÞ ð47Þ
Z b

a
grhðhÞdh ¼ 1

2
ðNa � NbÞ ð48Þ
Using the equilibrium of forces along the x–x and y–y axes (Fig. 4) for the element ðOABÞ, it is obtained

rrrðr; hÞ ¼ grrðhÞ ð49Þ
Z b

a
grrðhÞ cos hdh�

Z b

a
grhðhÞ sin hdh ¼ � Na sin a

�
� Nb sin b

�
þ Ta cos a
�

� Tb cos b
�

Z b

a
grrðhÞ sin hdhþ

Z b

a
grhðhÞ cos hdh ¼ Na cos a

�
� Nb cos b

�
þ Ta sin a
�

� Tb sin b
� ð50Þ



Fig. 4. Wedge under uniformly distributed loads at its faces.
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On the other hand the equilibrium of moments (Fig. 4), gives
r2
Z h

a
grhðxÞdxþ

Z r

0

rhhðs; hÞsds�
Z r

0

Nasds ¼ 0; 0 < s6 r; a6x6 h
The above relation, taking into account that
r2 ¼ 2

Z r

0

sds
becomes
rhhðr; hÞ ¼ ghhðhÞ ¼ Na � 2GðhÞ; GðhÞ ¼
Z h

a
grhðxÞdx ð51Þ
From relations (47), (49) and (51), it follows that the stresses rij are only depended on the angle h, thus
rijðr; hÞ ¼ gijðhÞ; i; j ¼ r; h ð52Þ

The Airy stress function ensuring a stress field independent of r (Barber, 1992), is
Mðr; hÞ ¼ C01r2 þ C0
01r

2hþ C22r2 cosð2hÞ þ C0
22r

2 sinð2hÞ ð53Þ

The boundary conditions are
h ¼ a ¼ � h0
2
; rrh r;

�
� h0

2

�
¼ Ta; rhh r;

�
� h0

2

�
¼ Na

h ¼ b ¼ h0
2
; rrh r;

h0
2

� �
¼ Tb; rhh r;

h0
2

� �
¼ Nb

ð54Þ
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The stress and displacement fields obtained from the stress function (53), are
rrrðr; hÞ ¼ grrðhÞ ¼ 2C01 þ 2C0
01h� 2C22 cosð2hÞ � 2C0

22 sinð2hÞ
rrhðr; hÞ ¼ grhðhÞ ¼ �C0

01 þ 2C22 sinð2hÞ � 2C0
22 cosð2hÞ

rhhðr; hÞ ¼ ghhðhÞ ¼ 2C01 þ 2C0
01hþ 2C22 cosð2hÞ þ 2C0

22 sinð2hÞ
ð55Þ
and
2lurðr; hÞ ¼ r ðj
h

� 1ÞC01 þ ðj� 1ÞhC0
01 � 2C22 cos 2h� 2C0

22 sin 2h
i

2luhðr; hÞ ¼ r
h
� 2C0

01 ln r þ 2C22 sin 2h� 2C0
22 cos 2h

i ð56Þ
where the unknown coefficients C01, C
0
01, C22 and C0

22 are obtained from the boundary conditions (54) and

the stress field (55); hence
C01 ¼
ðNa þ NbÞ sin h0 þ ðTa � TbÞ cos h0

4 sin h0

C0
01 ¼

ðTa þ TbÞ sin h0 � ðNa � NbÞ cos h0
2 cos h0 h0 � tan h0ð Þ

C22 ¼ � Ta � Tb
4 sin h0

C0
22 ¼ �ðTa þ TbÞh0 � ðNa � NbÞ

4 cos h0 h0 � tan h0ð Þ

ð57Þ
where
h0 6¼ p or 2p and h0 6¼ tan h0 ðh0 6¼ 1:43pÞ:
Using relations (55) and (57), the equilibrium conditions (48), (50) and (51) are fulfilled.
5. Multi-material isotropic wedge under distributed loading

This section investigates the conditions in linear elasticity under which the compatibility of displace-

ments among the interfaces of a multi-material wedge is succeeded, in order to ensure the variable separable

solution of the stress field.

In the previous analysis for the equilibrium of moments and forces, the mechanical properties of ma-

terials do not appear because of the continuity of the displacement field. Taking into consideration the

continuity, the compatibility of displacements and the self-similarity property, relation (4) is also valid in

the case of a multi-material isotropic wedge, so
hrrðrÞ ¼ hrhðrÞ ¼ hhhðrÞ ¼ rn ð58Þ
The solution of the multi-material wedge problem (Fig. 1) is studied for every sub-wedge considering that at

the interfaces ODi ð16 i6 k � 1Þ act distributed normal and shear stresses with the same order of r, ful-
filling the self-similarity property
NiðrÞ ¼ rhhðr; h ¼ hiÞ ¼ hhhðrÞghhðhiÞ ¼ Nirn; Ni ¼ ghhðhiÞ; 16 i6 k � 1

TiðrÞ ¼ rrhðr; h ¼ hiÞ ¼ hrhðrÞgrhðhiÞ ¼ Tirn; Ti ¼ grhðhiÞ; 16 i6 k � 1
ð59Þ
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where the unknown coefficients Ni, Ti will be determined from the compatibility conditions,
uðiÞr ðr; hiÞ ¼ uðiþ1Þ
r ðr; hiÞ; 16 i6 k � 1

uðiÞh ðr; hiÞ ¼ uðiþ1Þ
h ðr; hiÞ; 16 i6 k � 1

ð60Þ
In Sections 2 and 3 the cartesian system of the internal and external bisector of the wedge was finally used.

In the case of a multi-material wedge (Fig. 1), in order to avoid the reference in a general cartesian system,
we express the displacements in the local system of the internal and external bisector of every sub-wedge.

For this reason and in order to calculate the unknown coefficients Ni and Ti, the system (60) is transformed,

using the relations, (22), (23), (38) and (39) for n6 � 3 or (28), (29), (44) and (45) for nP 1 or (56) and (57)

for n ¼ 0; and in the absence of normal forces relations (16) and (17) for n ¼ �2, as follows
uðiÞr r;
�

� hi�1 � hi
2

�
¼ uðiþ1Þ

r r;
hi � hiþ1

2

� �
; 16 i6 k � 1

uðiÞh r;
�

� hi�1 � hi
2

�
¼ uðiþ1Þ

h r;
hi � hiþ1

2

� �
; 16 i6 k � 1

ð61Þ
where
h0 ¼ a and hk ¼ b:
After the determination of Ni and Ti, we may calculate the stress field of every sub-wedge in terms of the

local cartesian system of the internal and external bisector.
6. Applications

First consider the case of a bi-material isotropic wedge (Fig. 5). The sub-wedge (1) with mechanical

properties ðj1; l1Þ occupies the sector with angle h1ð¼ �aÞ while the sub-wedge (2), with mechanical

properties ðj2; l2Þ, occupies the sector with angle h2ð¼ bÞ. The external faces of the bi-material wedge are
Fig. 5. A two-materials wedge under linearly distributed loads at its faces.
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loaded with distributed shear and normal loads of the form Cr (order of r, n ¼ 1). Taking into conside-

ration the compatibility of displacements along the interface OC, from relations (60) it is obtained
uð1Þi ðr; 0Þ ¼ uð2Þi ðr; 0Þ; i ¼ r; h ð62Þ
and the unknown distributions of normal and shear stresses along the interface (OC), are given by
NcðrÞ ¼ Ncr; Nc ¼
FRHT þ FHRT

RNHT þHNRT

TcðrÞ ¼ Tcr; Tc ¼
FHRN � FRRN

RNHT þHNRT

ð63Þ
in case that
RNHT þHNRT 6¼ 0 ð64Þ
where
FR ¼ l2ðj1 þ 1Þ
2 sin h1

�
� Na

tan h1
þ Ta

�
þ l1ðj2 þ 1Þ

2 sin h2

Nb

tan h2

�
þ Tb

�

FH ¼ l2ðj1 þ 1Þ
2 sin h1 tan h1

Na
2� tan2 h1

tan h1

�
� 3Ta

�
þ l1ðj2 þ 1Þ
2 sin h2 tan h2

Nb
2� tan2 h2

tan h2

�
þ 3Tb

�

RN ¼ 1

2
l2 ðj1

�	
� 3Þ � j1 þ 1

tan2 h1

�
� l1 ðj2

�
� 3Þ � j2 þ 1

tan2 h2

�


RT ¼ l2ðj1 þ 1Þ
tan h1

þ l1ðj2 þ 1Þ
tan h2

HN ¼ l2ðj1 þ 1Þ
tan3 h1

þ l1ðj2 þ 1Þ
tan3 h2

HT ¼ 1

2
l2

3ðj1 þ 1Þ
tan2 h1

�	
þ ðj1 þ 5Þ

�
� l1

3ðj2 þ 1Þ
tan2 h2

�
þ ðj2 þ 5Þ

�


ð65Þ
Using relations (27)–(29) for the shear loading and relations (43)–(45) for the normal loading, the stress and
displacements fields may be obtained for any r.

As a second application consider a three-materials isotropic wedge with a parabolic distributed shear

and normal loading (order of r, n ¼ 2) along its external faces (Fig. 6). The sub-wedge (1) occupies the

sector h1 6 h6 b and has mechanical properties ðj1; l1Þ. The sub-wedge (2) occupies the sector h2 6 h6 h1
with mechanical properties ðj2; l2Þ while the sub-wedge (3) occupies the sector a6 h6 h2 with mechanical

properties ðj3; l3Þ. In the case of the three-materials wedge the system (61) is written
uð1Þr r;
�

� b� h1
2

�
¼ uð2Þr r;

h1 � h2
2

� �

uð1Þh r;
�

� b� h1
2

�
¼ uð2Þh r;

h1 � h2
2

� �

uð2Þr r;
�

� h1 � h2
2

�
¼ uð3Þr r;

h2 � a
2

� �

uð2Þh r;
�

� h1 � h2
2

�
¼ uð3Þh r;

h2 � a
2

� �
ð66Þ
For the solution of the above system the coefficients C21, C
0
21, C42 and C0

42, are determined from relations

(29) and (45) taking n ¼ 2 for every sub-wedge, thus



Fig. 6. A three-material wedge under parabolically distributed loads at its faces.
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CðjÞ
21 ¼ Tj � Tj�1

6
b1j þ

Nj þ Nj�1

6
c1j; j ¼ 1; 2; 3

C0ðjÞ
21 ¼ Tj þ Tj�1

6
b2j �

Nj � Nj�1

6
c2j; j ¼ 1; 2; 3

CðjÞ
42 ¼ � Tj � Tj�1

6
b3j �

Nj þ Nj�1

12
c3j; j ¼ 1; 2; 3

C0ðjÞ
42 ¼ � Tj þ Tj�1

6
b4j þ

Nj � Nj�1

12
c4j; j ¼ 1; 2; 3

ð67Þ
where
b1j ¼
cos½2ðhj�1 � hjÞ�

sin½3ðhj�1 � hjÞ� þ 3 sinðhj�1 � hjÞ
; j ¼ 1; 2; 3

c1j ¼
sin½2ðhj�1 � hjÞ�

sin½3ðhj�1 � hjÞ� þ 3 sinðhj�1 � hjÞ
; j ¼ 1; 2; 3

b2j ¼
sin½2ðhj�1 � hjÞ�

sin½3ðhj�1 � hjÞ� � 3 sinðhj�1 � hjÞ
; j ¼ 1; 2; 3

c2j ¼
cos½2ðhj�1 � hjÞ�

sin½3ðhj�1 � hjÞ� � 3 sinðhj�1 � hjÞ
; j ¼ 1; 2; 3

b3j ¼
cosðhj�1 � hjÞ

sin½3ðhj�1 � hjÞ� þ 3 sinðhj�1 � hjÞ
; j ¼ 1; 2; 3

c3j ¼
sinðhj�1 � hjÞ

sin½3ðhj�1 � hjÞ� þ 3 sinðhj�1 � hjÞ
; j ¼ 1; 2; 3

b4j ¼
sinðhj�1 � hjÞ

sin½3ðhj�1 � hjÞ� � 3 sinðhj�1 � hjÞ
; j ¼ 1; 2; 3

c4j ¼
cosðhj�1 � hjÞ

sin½3ðhj�1 � hjÞ� � 3 sinðhj�1 � hjÞ
; j ¼ 1; 2; 3

ð68Þ
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with
T0 ¼ Tb; N0 ¼ Nb; T3 ¼ Ta; N3 ¼ Na
and
h0 ¼ b; h3 ¼ a
Taking into consideration relations (67) and (68), the compatibility conditions (66) take the form
ðjj � 3Þ
lj

CðjÞ
21 cosðhj�1

h
� hjÞ � C0ðjÞ

21 sinðhj�1 � hjÞ
i
� 4

lj
CðjÞ

42 cos½2ðhj�1

n
� hjÞ� � C0ðjÞ

42 sin½2ðhj�1 � hjÞ�
o

¼ ðjjþ1 � 3Þ
ljþ1

Cðjþ1Þ
21 cosðhj

h
� hjþ1Þ þ C0ðjþ1Þ

21 sinðhj � hjþ1Þ
i
� 4

ljþ1

Cðjþ1Þ
42 cos½2ðhj

n
� hjþ1Þ�

þ C0ðjþ1Þ
42 sin½2ðhj � hjþ1Þ�

o
; j ¼ 1; 2 ð69aÞ

� ðjj þ 3Þ
lj

CðjÞ
21 sinðhj�1

h
� hjÞ þ C0ðjÞ

21 cosðhj�1 � hjÞ
i
� 4

lj
CðjÞ

42 sin½2ðhj�1

n
� hjÞ� þ C0ðjÞ

42 cos½2ðhj�1 � hjÞ�
o

¼ jjþ1 þ 3

ljþ1

Cðjþ1Þ
21 sinðhj

h
� hjþ1Þ � C0ðjþ1Þ

21 cosðhj � hjþ1Þ
i
þ 4

ljþ1

Cðjþ1Þ
42 sin½2ðhj

n
� hjþ1Þ�

� C0ðjþ1Þ
42 cos½2ðhj � hjþ1Þ�

o
; j ¼ 1; 2 ð69bÞ
From relations (69a) and (69b) a linear system of equation is derived with unknowns N1, N2, T1 and T2. The
existence of solutions of the above system if its determinant is different from zero, ensures the variable-
separable form of the multi-material wedge stress field.

In a plane strain case if the angles at the apex and the mechanical properties of a three-materials wedge,

are
b� h1 ¼ p=6; j1 ¼ 1:60; l1 ¼ 26 GPa for the sub-wedge ð1Þ

h1 � h2 ¼ p=6; j2 ¼ 1:88; l2 ¼ 39 GPa for the sub-wedge ð2Þ

h2 � a ¼ p=6; j3 ¼ 1:76; l3 ¼ 80 GPa for the sub-wedge ð3Þ
then the linear system of (69a) and (69b), takes the form
0:903T1 � 0:154N1 þ 0:256T2 � 0:29N2 ¼ �0:346Tb � 0:400Nb

0:156T1 � 0:452N1 � 0:295T2 þ 0:128N2 ¼ �0:400Tb � 0:173Nb

0:128T1 þ 0:148N1 þ 0:281T2 � 0:0854N2 ¼ �0:060Ta þ 0:069Na

0:295T1 þ 0:128N1 þ 0:203T2 � 0:281N2 ¼ 0:138Ta � 0:060Na

ð70Þ
and for
Ta ¼ �1; Na ¼ Tb ¼ Nb ¼ 1
the system (70) has the solution
T1 ¼ �0:243; N1 ¼ 1:397; T2 ¼ 0:210; N2 ¼ 1:238 ð71Þ
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The stress and the displacement fields in the local system of every sub-wedge, are
rð1Þ
rr ðr; hÞ ¼ r2½�0:384 cosð4hÞ � 0:828 sinð4hÞ�

rð1Þ
rh ðr; hÞ ¼ r2½0:582 sinð2hÞ þ 0:912 cosð2hÞ þ 0:384 sinð4hÞ � 0:828 cosð4hÞ�

rð1Þ
hh ðr; hÞ ¼ r2½1:164 cosð2hÞ � 1:824 sinð2hÞ þ 0:384 cosð4hÞ þ 0:828 sinð4hÞ�

ð72Þ
uð1Þr ðr; hÞ ¼ r3

52
½�0:136 cosð2hÞ þ 0:213 sinð2hÞ � 0:128 cosð4hÞ � 0:276 sinð4hÞ�

uð1Þh ðr; hÞ ¼ r3

52
½0:446 sinð2hÞ þ 0:699 cosð2hÞ þ 0:128 sinð4hÞ � 0:276 cosð4hÞ�

ð73Þ

rð2Þ
rr ðr; hÞ ¼ r2½0:840 cosð4hÞ � 0:204 sinð4hÞ�

rð2Þ
rh ðr; hÞ ¼ r2½1:002 sinð2hÞ þ 0:102 cosð2hÞ � 0:840 sinð4hÞ � 0:204 cosð4hÞ�

rð2Þ
hh ðr; hÞ ¼ r2½2:004 cosð2hÞ � 0:204 sinð2hÞ � 0:840 cosð4hÞ þ 0:204 sinð4hÞ�

ð74Þ
uð2Þr ðr; hÞ ¼ r3

78
½�0:187 cosð2hÞ þ 0:019 sinð2hÞ þ 0:280 cosð4hÞ � 0:068 sinð4hÞ�

uð2Þh ðr; hÞ ¼ r3

78
½0:815 sinð2hÞ þ 0:083 cosð2hÞ � 0:280 sinð4hÞ � 0:068 cosð4hÞ�

ð75Þ

rð3Þ
rr ðr; hÞ ¼ r2½�0:396 cosð4hÞ þ 1:164 sinð4hÞ�

rð3Þ
rh ðr; hÞ ¼ r2½0:534 sinð2hÞ � 1:128 cosð2hÞ þ 0:396 sinð4hÞ þ 1:164 cosð4hÞ�

rð3Þ
hh ðr; hÞ ¼ r2½1:068 cosð2hÞ þ 2:256 sinð2hÞ þ 0:396 cosð4hÞ � 1:164 sinð4hÞ�

ð76Þ

uð3Þr ðr; hÞ ¼ r3

160
½�0:110 cosð2hÞ � 0:233 sinð2hÞ � 0:132 cosð4hÞ þ 0:388 sinð4hÞ�

uð3Þh ðr; hÞ ¼ r3

160
½0:424 sinð2hÞ � 0:895 cosð2hÞ þ 0:132 sinð4hÞ þ 0:388 cosð4hÞ�

ð77Þ
The stress and displacement fields for the three-materials isotropic wedge are given in Figs. 7–11 for r ¼ 1.
7. Discussion and conclusions

The problem of the infinite multi-material isotropic wedge is studied in linear elasticity under normal and
shear distributed loading at its faces. The solution of the problem is proved to be self-similar and is ex-

pressed in a variable-separable form because of the geometry of the wedge and the form of the loading. In

the present work, a procedure based on the self-similarity property is developed for the analysis of the

infinite multi-material wedge, which allows any kind of linear elastic isotropic materials to be considered. A

computer code has been implemented for the calculation and the graphical representation of the dis-

placement and stress fields in any sub-wedge of the multi-material wedge. The tool developed has been used

to analyze the corner configurations that appear in a typical metal to metal or metal to composite joint

under the action of external distributed loads.
The proposed analysis gives the stress and displacement fields for mononymous load-distributions in

terms of the radius r of the polar coordinate system and for different values of the order n of r.



Fig. 8. 100uh-diagram of the three-materials wedge for r ¼ 1.

Fig. 7. 100ur-diagram of the three-materials wedge for r ¼ 1.
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Fig. 9. rrr-diagram of the three-materials wedge for r ¼ 1.

Fig. 10. rrh-diagram of the three-materials wedge for r ¼ 1.
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Fig. 11. rhh-diagram of the three-materials wedge for r ¼ 1.
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A multi-material wedge under a polynomial distributed loading along its external faces may be

studied with the proposed theory using the superposition principle for every monomial-type of loading.

The proposed study does not investigate the type and the order of singularity at the vertex of a multi-

material wedge under normal and shear loading at its faces. It concerns the whole area of the wedge

except for the region at the neighborhood of the singular point. We focus on the possibility of de-

termining the stress and displacements fields in any plane multi-material wedge in the absence of body

forces, using the superposition principle for different loading cases fulfilling a variable-separable (self-

similar) solution.
From Figs. 7 and 8, continuity of the displacement field along the interfaces is observed as was expected

from the theory (Section 5). From Figs. 10 and 11, continuity of the rrh and rhh stress-fields along the

interfaces is also observed whereas for the rrr stress-field (Fig. 9), a discontinuity appears at the interfaces

due to different material properties. The variable-separable relations (self-similarity property) are applied to

any case of material combinations and to any case of order of r for the distributed loads at the external

faces (except the below mentioned special cases) while restrictions for the material properties are required in

the case of a multi-material wedge loaded by a concentrated force at its apex, in order to have a variable-

separable formulation (Pageau et al., 1994; Joseph and Zhang, 1998).
Our investigation in the special cases of the order of n (n ¼ �1 for shear and normal loading and n ¼ �2

for normal loading only) in a bi-material wedge and the study of a sandwich three-materials wedge, will be

the subjects of our future research.
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