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Abstract

The problem of a multi-material composite wedge under a normal and shear loading at its external faces is con-
sidered with a variable separable solution. The stress and displacement fields are determined using the equilibrium
conditions for forces and moments and the appropriate Airy stress function. The infinite isotropic wedge under shear
and normal distributed loading along its external faces is examined for different values of the order n of the radial
coordinate r. The proposed solution is applied to the elastostatic problem of a composite isotropic k-materials infinite
wedge under distributed loading along its external faces. Applications are made in the case of the two-materials
composite wedge under linearly distributed loading along its external faces and in the case of a three-materials com-
posite wedge under a parabolically distributed loading along its external faces.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The plane elasticity problem of a composite body consisting of a number of dissimilar wedges of
arbitrary angles such that all interfaces coalesce at the same vertex O (Fig. 1) is in great interest in many
engineering fields including automotive, microelectronics, aerospace, maritime, and nuclear engineering. In
addition, when considering the strength of a composite, a very important part that has to be studied is the
interface between two dissimilar materials. First Williams (1952) using the Airy stress function, developed
the eigen-function expansion method in order to study the single-material wedge for several combinations
of homogeneous boundary conditions. A lot of other investigations concerning material and geometric
complications have followed by Bogy (1968, 1970), Dundurs (1969), Gdoutos and Theocaris (1975),
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Fig. 1. Composite multi-material wedge under distributed loads at its faces.

Theocaris et al. (1979), Dempsey and Sinclair (1981), Ting (1984, 1996), Lau and Delale (1988), Dundurs
and Markenscoft (1989), Barber (1992), Pageau et al. (1994), Joseph and Zhang (1998), Mantic et al. (1997),
Horgan (1998) and Chen (1998).

Our study considers an infinite isotropic wedge under a polynomial-distributed loading (Fig. 1) at its
external faces. It is also supposed that the distributed loading along the faces fulfills the self-similarity
condition given by

N(or) = fu(@)N(r), fv(1)=1, ax€R (1)
in the case of a normal distributed loading; and
T(ar) = fr(0)T(r), fr(1)=1, =x€R )

in the case of a shear distributed loading, where fy(a) and f7(o) are the similarity functions and N(r), T(r)
are polynomials.
It is proved that the polynomials N(») and T(r) in order to satisfy the self-similarity relations (1) and
(2), must be mononyms of the form
N(r)=N", n=0+1,£2,...

3
Tr)=7", n=0,+£1,£2,... 3)

where N, T constants, and #n the order of the r.
The self-similarity property of the loading and the non-existence of a “characteristic dimension’ in the
geometry of the problem, enforces a variable-separable form of the stress field, thus

aij(or, 0) = fij(@)ay(r, 0)
and for o = 1/r, we have
O-ij(ra 0) = hij(r)gij(e)v lv] =r 0 (4)
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where

=D w0 =00

From relation (4), the distributed loads (3) along the faces 6 = « and 6 = f§ of the wedge, take the form
(i) shear loading

T,(r) = Ty" = a,0(r,0 = o)

Ty(r) = Tyr" = 0,0(r,0 = B) )
thus
ho=1", T,=guo0=0a), Ty=gl0=0p) (6)
(i1)) normal loading
N,(F) = N = 6pp(r, 0 = @) ™
Ny(r) = Nyr" = ago(r, 0 = )
thus
hoo(r) = 1", Ny = goo(0 =), Ny = goo(0 = B) (8)

Using the equilibrium conditions for forces and moments, and for different values of n, the unknown
functions 7%;;(r) in the stress field expressions are determined. Selecting appropriate terms from the Michell
tables (Michell, 1899; Barber, 1992), the Airy stress function, the g;;(0) functions and the stress fields are
easily obtained. Finally applying the boundary conditions, the unknown coefficients of the stress fields are
determined in the cases of shear distributed loading, normal distributed loading and uniformly distributed
loading (n = 0).

The advantages of the proposed solution are

(1) The use of self-similarity property in the wedge elastostatic problem not only for concentrated loads at
the apex but also for distributed loads along the faces of the wedge.

(i) The determination of the stress function from the Michell tables (Michell, 1899) according to the re-
quired order of » because of the self-similarity property.

The contribution of our study relative to other investigations (Theocaris et al., 1979; Dempsey and
Sinclair, 1981; Pageau et al., 1994; Ting, 1996; Mantic et al., 1997; Joseph and Zhang, 1998; Chen, 1998) is
the solution of the elastostatic problem of a multi-material wedge and the determination of the stress and
displacement fields not close to the singular point at the apex of the wedge, instead of just the determination
of the order of singularity at the apex.

An analytical solution is proposed, based on the self-similarity property (variable-separable formula-
tions). Using the superposition principle, the stress and displacement fields are determined analytically in
the case of a multi-material wedge with different material properties under a polynomial distributed loading
along the external faces of the wedge.

The proposed solution is applied to the elastostatic problem of an infinite multi-material isotropic wedge
under distributed loading along its faces. Applications are made in the case of a composite two-materials
infinite wedge under a linear distributed loading along its external faces and in the case of a three-material
infinite isotropic wedge under a parabolic (n = 2) distributed loading along its external faces.
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Fig. 2. Wedge under distributed shear loads at its faces.

2. Shear distributed loading

Using the equilibrium conditions for forces along the x—x and y—y axes (Fig. 2) for the element (44'B'B)
and taking into account relations (5) and (6), it is obtained

by (1) = hyo(r) = 1" )

B T, coso — Tycos b )
gn(0)cos0dl = pa) g0(0)sin0dl, n#—1
; o
T, sino — Tpsi
/ ,(0) sin 0d0 = smzflﬁsmﬁ — [ go(0)cos0d0, n# -1
From the equilibrium of moments at the element (44'B'B), it is also obtained

B

[ eat0)d0 =0 (1)

From the Michell tables (Michell, 1899; Barber, 1992) we can select terms in order to formulate the Airy
stress function which ensures the required order of r. Because of the use of the Michell tables we distinguish
the following cases.

2.1. The case n = =2

From relations (5), (6) and (9), it is obtained

L) =2 T =L, helr) = halr) = (12)

r
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The corresponding Airy stress function is
M(r,0) = T'oaInr + I'y30 + '3 cos(20) + I'h, sin (20) (13)

The boundary conditions of the problem are

0 0 T, 0
0 a:_?ov O‘r@(r?_70>:r_27 0'9{)(7'7—?0):0

0o 0o iy 0o (14)

0=p= ?; J,0<r,?> = 000<r,?> =0

The stress and the displacement fields satisfying the stress function (13), are
0, (r,0) = % - 45223 cos(20) — 4;/23 sin(20)
a0(r, 0) = % - 2223 sin(26) + 2523 cos(26) (15)
ae(r,0) = —%

and
2uu,(r, 0) = —% + @ cos(20) + w sin(26) 6
2uug(r, 0) = —%63 - w sin(20) + Lrl)r,ﬂ cos(20) e

where u is the shear modulus, x = (3 — 4v) for plane strain, x = (3 — v)/(1 + v) for generalized plane stress,
v being the Poisson’s ratio; while the unknown coefficients I'os, I, I'23, I'5; derived from the boundary
conditions (14) and the equilibrium of moments (11), are
(T, + Tp) tan 0,
2(0y — tan b))

T, — T ;o (T, + Tp) 0o
T 4sin6,’ "2 4cosby(0, — tan b,)

F=0, I)=-—
(17)

where
sin(200) 7é 0, 0() — tan 9() 7& 0, 00 = ﬁ — .
Using relations (15) for the functions g;;(0) (i,j = r,0) and relations (17), relations (10) are satisfied.

22. The case n = —m< — 3

From relations (5), (6) and (9), it is obtained

LY =2 T =2 () = ho(r) = — (18)

- W - r”l rm

The corresponding Airy stress function is

cos(m0 cos|(m —2)60 sin(m0
M) = 1y 0 coslln =20 (m0)

m=—nz=3 (19)
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The boundary conditions of the problem are

0 0 T, 0
0=o= —?0; Ur9<7”,—70> = 090(”7—70) =0

20
0= ﬁ — . % — Q @ =0 ( )
5 0\ 7 5 ) T 000 ”,2 =
The stress and the displacement fields satisfying the stress function (19), are
cos(mf cos[(m — 2)0
O-rr(ra 0) = - FmS(m + 2)<m - 1) }E:/l ) - F(m—2)4(m - 2)(7}’1 - 1) [(n:,m ) ]
, sin(m6 , sin[(m — 2)0
~Ipm+2)m = )X 2y ) S
sin(m0 sin[(m — 2)0
6,0(r,0) = — [am(m — 1) 5:1 )—F(m,2)4(m—2)(m—l)w )
(21
P 1) cosr( ") L F (= 2)(m - 1)M
cos(mb cos[(m — 2)0
opo(r,0) = Tpz(m—1)(m — 2)#4— I (y-2pa(m — 2)(m — 1)#
, sin(m0) , sin[(m — 2)0
4 Ftm = D =25 2y 1y S22
and
1
2u,(r, 0) = —— [F3(ic +m — 1) cos(m) + I'y-2)4(m — 2) cos[(m — 2)0] + I',,5(x +m — 1) sin(m0)
rm-
+ I, _2y4(m — 2) sin[(m — 2)0]]
2uug(r,0) = L] [ 3(k —m + 1) sin(m0) + I'(,y—2y4(m — 2) sin[(m — 2)0] + I, s(x — m + 1) cos(m0)
r}’ﬂ*

- F/(m72)4(m —2)cos[(m —2)0]]
(22)

where the unknown coefficients I3, I 5, I(n_2ys, I’ Em72)4 are derived from the boundary conditions (20)
using (21). Thus

(T, — Ty) cos (m%L — 0y)
2(m — 1)((m — 1) sin 0y + sin[(m — 1)0p])

Fm3 = (
) (T, + Ty) sin (m% — 0,)
(

Tz = 2(m — 1)(sin[(m — 1)0] — (m — 1) sin 0p)
r - (T, — Ty) cos (m%)
2% 2 (m = 1)((m — 1) sin Oy + sin[(m — 1)0,))
. _ (T, + Tp) sin (m%)
(m—2)4 2(m — 1)(sin[(m — 1)0] — (m — 1) sin 0)
where
sin[(m — 1)0y] # £(m — 1)sinly, 0y =p—«

Using relations (21) for the functions g;;(0) (i,j = r,0) and relations (23), the equilibrium conditions (10)
and (11), are satisfied.
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2.3. The case n=1
From relations (5), (6) and (9), it is obtained
T(r)y="Tr", T3(r)="Tp", h.(r)=he(r)=1"
The corresponding Airy stress function is
M(r,0) = T\yr"** cos(n0) + T, "2 sin(n0) + Ty cos[(n 4 2)0] + I, 57" sin[(n + 2)0]

The boundary conditions of the problem are

0 0 0
0:“:_303 O'rO(V,—20> =T, 600(}’,-20) =0

0 0 0
92[{:?0; Ur()(i’,%):T/}V"? 0'00(}”,50):0

Correspondingly the stress and the displacement fields, are
0, (r,0) = —y(n+1)(n—2)r" cos(nd) — I';(n + 1)(n — 2)¢" sin(n0)

— Lap(n+2)(n+ l)r” cos[(n +2)0] = I, 2, (n +2)(n + 1)r" sin[(n + 2)0]
6,0(r,0) = I'yn(n+ 1)r" sin(n0) — I') n(n + 1)r" cos(nl) + I'(02(n + 2)(n + 1)r" sin[(n + 2)0)]
— Ipap(n+2)(n+ )V COS[(n +2)0]
oop(r,0) = Iy(n+ 1)(n + 2)r" cos(nb) + I', | (n + 1)(n + 2)#" sin(n0)
4 Dipyap(n 4+ 2)(n + 177 cos[(n +2)6] + T,y n +2)(n + 1" sinf(n + 2)0]

and
2uu,(r,0) = (x —n — 1)r" ™[I,y cos(n0) + I, sin(n0)]
— (n+ 27" T uy2)2 c08[(n + 2)0] + T, ), sin[(n + 2)0]}
2uug(r, 0) = (k +n+ )" [,y sin(n0) — I cos(n0)]
+ (n+2)r" I oy sin[(n +2)0] = T, ), cos[(n + 2)0]}

5845

(24)

(25)

(28)

Using the boundary conditions (26) and the stress field (27), the unknown coefficients 'y, I',;, I'(s12)2 and

!/
L 40 ar€

T, — Ty)cos [(n +2) %]

_ (
Fn= 2(n + 1)(sin[(n + 1)0o] + (n + 1) sin 0,)
o (T, + Ty) sin [(n +2) 2]
"7 2(n + 1) (sin[(n + 1)0o] — (n + 1) sin 6)

r B (T, — Ty) cos (n%)

(227 0+ 1)(sinf(n + 1)0) + (n + 1) sin 6)
I _ (Tx‘FT/;)SiIl (}’l%o)

(227 2 (n + 1) (sin[(n + 1)0p) — (n + 1) sin 0p)

where
sin[(n+ 1)0p) # £(n+ 1)sinby, 0Oy=p—«
The equilibrium conditions (10) and (11) are satisfied using relations (27) and (29).
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3. Normal distributed loading
From the equilibrium of moments at the element (44'B'B) (Fig. 3), it is obtained
ho(r)=1r" (30)

b Ny_N
[ a0 ="z (31)

In a similar way from the equilibrium of forces along the x—x and y—y axes for the element (44'B'B) (Fig. 3)
and taking into consideration relations (7) and (8), we have

R (F) = hog(r) = 1" (32)

N [
N, sin o — Nysin 8 g0(0)sin0d0, n# -1

B
/x g.-(0) cos0d0 = — P i

(33)
B —N B
/ @ (0)sin 0d0 = Y2082 = NGCOSE [T 0V eos0d0, n £ —1
o n Jr 1 o
Using the Michell tables as in Section 2, we distinguish the following cases.
3.1. The case n = —m< — 3
From relations (7), (8), (30) and (32), it is obtained
N, N, 1
Nar) = No(r) =200 o) = hoolr) = ho(r) = (34)

5. S\ WA L Na(D)

eo//' \ \ ‘\ \ \\ ‘ A \ ‘\\ \
0 . i
X

Fig. 3. Wedge under distributed normal loads at its faces.
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The Airy stress function ensuring the required order of r, is

M(r,0) = I3 CO:,SZQ) + T COS[(Z; 20, Si:,,(,'f’f) + T m[@;fn%z)(a]
n=-m< —3
The boundary conditions are

0=o= 00, Gro(”, 90) =Y, ‘700<”7_90) :Erj
2 2 2 r

HZﬁZ%, ar()(i’, 5 > =0, Uoo(r,%)) :%

The stress and displacement fields derived from the stress function (35), are

0:(r,0) = — (m~+2)(m—1)T,3 COS(,:"H) = (m—=2)(m— 1)%4>4M
—(m+2)(m— DI, smﬁ)’fe) — (m—2)(m - 1)r2m72>4w

00(r,0) = —m(m —1)I,3 Sin(,:ne) — (m —=2)(m — 1)F<m—2)4w
+ m(m — 1)F;3w + (m —2)(m — 1”@4)4M

(1. 0) = (m = 1)(m — 2L, Dy 1) - 21, SO =2
T L L R TR e

and

1

m3

5847

2uu,(r,0) = pr) [F3(c +m — 1) cos(ml) + I (y_24(m — 2) cos[(m — 2)0] + I, ,(k + m — 1) sin(m0)

4 Ty _yyq(m — 2) sin[(m — 2)0)]
1

Quug(r,0) = ) [T 3 (k —m+ 1) sin(m0) + I'(y—2p4(m — 2) sin[(m — 2)0] + I, ;(k — m — 1) cos(m0)

= Iy )4 (m = 2) cos[(m — 2)0]]

(38)

where the unknown coefficients I3, I3, I'(n-2)4, ', 24 are calculated using the boundary conditions (36)

and the relations (37), thus
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. (N, + Ny)sin [(m —2) %]

m3 ( — 1)((m — 1) sin 0y + sin[(m — 1)0y])
oo (Ny — Np) cos [(m — )%]

" 7 2(m — 1)((m — 1) sin 6y — sin[(m — 1)0]) (39)
; B m(N, + Ny) sin (m% )

(m=2)4 = 2(m— 1)(m —2)((m — 1) sin Oy + sin[(m — 1)6y])

) sin
)
- B m(N, — Nj) cos (m%)
m=24 7 2(m — 1)(m — 2)((m — 1) sin 0 — sin[(m — 1)0o))

where
sin[(m — 1)60y] # £(m — 1)sinby, 6y=p— o.
Using relations (37) for the functions g;;(0) (i,j = r, 8) and relations (39), the equilibrium conditions (31)
and (33) are satisfied.
3.2. The case n=1
From relations (7), (8), (30) and (32), we have
No(r) = Nors - Ny(r) = Ngr's  h(r) = huo(r) = hoo(r) = 1" (40)
The Airy stress function ensuring the order of 7, is
M(r,0) = Iyr"" cos(n) + Iy sin(n0) + I yz0r" ™ cos[(n +2)0] + T, 7" sin[(n +2)0]  (41)

The boundary conditions are

0 0 0
0:(12_707 Gr0<r7_50>: ) 000(’,4’_?0):]\]2?/1

0o 6o 0o 42)
0=p= 3; a,.g(r,7> =0, a(;()(r,E) = Ny
The stress and displacement fields obtained from the stress function (41), are
0,(r,0) = —(n+1)(n—2)I 7" cos(n0) — (n+ 1)(n — 2)I",#" sin(n0)
= (n+1)(n+2)T (207" cos[(n + 2)0] — (n + 1)(n + 2)I7(, 5,7 sin[(n + 2)0]
0,0(r,0) = n(n+ 1) ¢" sin(nl) — n(n+ 1)I", 7" cos(n0) + (n+ 1)(n + 2)I (120" sin[(n + 2)0] )

— (n+1)(n+2)T,,,),r" cos[(n +2)0]
op(r,0) = (n+ 1)(n + 2)I,y 7" cos(nb) + (n+ 1)(n+ 2)I", ;7" sin(n0)
+ (n 4+ 1)(n + 2) (y422r" cos[(n + 2)0] + (n + 1)(n + 2)T(,,,)," sin[(n + 2)0)]



LH. Stampouloglou, E.E. Theotokoglou | International Journal of Solids and Structures 40 (2003) 5839-5860 5849

and
2, (r, 0) = 1! {(K —a—1) [rnl cos(n0) + I, sin(ne)]
—(n+2) { (nr22€08[(n +2)0] + I, 5, sin[(n + 2)9]] }
2pup(r, 0) = 1 {(K Fn+1) [r,,l sin(n0) — I, cos(n())}

+(n+2) { (nr2p2 8in[(n +2)0] — I, ), cos[(n + 2)0]] }

where the unknown coefficients I'1, I, I'w42)2 and I, ,,), are obtained from the boundary conditions (42)
and the stress field (43), thus
(N, + Ng)sin [(n+2) 2]

2(n+ 1)(sin[(n+ 1)6] 4+ (n + 1) sin 6y)
oo (N, — Ng)cos [(n+2)%]

" 2(n+ 1) (sin[(n + 1)0p] — (n + 1) sin 0p)
r - n(N, + Ng) sin (n %)

(22 T2+ D) (n + 2)(sin [(n + 1)0,] + (n + 1) sin 0)
ro n(N, — Ng)cos (n2)
(2272 (n 4 1) (n 4 2)(sin [(n + 1)0p] — (n + 1) sin 0)

Fnlz

(45)

where
sin[(n+ 1)0p) # £(n+ 1)sin6y, 0y=p—a.
Using relations (43) for the functions g;;(0) (i,j = r, 0) and relations (45), the equilibrium conditions (31)

and (33) are satisfied.
4. Uniformly distributed loading (n = 0)

In the case of uniformly distributed loading (Fig. 4), relations (5) and (7) take the form
TZ(F) = Tazar()(r,a); Naz(r) :Na:a()ﬂ(n“)

Ty(r) = Ty = a,0(r, B);  Np(r) = Ny = o0u(r, B) (46
From the equilibrium of moments at the element (OAB) (Fig. 4), we have
a,0(r,0) = g.(0) (47)
Y 1
| (0@ =55~y (48)
Using the equilibrium of forces along the x—x and y—y axes (Fig. 4) for the element (OA4B), it is obtained
0 (r,0) = g (0) (49)

B B
/ 2.(0) cos 9d0—/ g0(0)sin0d0 = — (N, sino« — Nysin ) + (T, cos o — Ty cos f)
* * (50)

B B
/ 2.(0)sin 0d0 + / g0(0) cos 0d0 = (N, coso — Nycos ) + (T, sino — T sin )

o
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Fig. 4. Wedge under uniformly distributed loads at its faces.

On the other hand the equilibrium of moments (Fig. 4), gives

0 r r
r2/ g,o(w)dw+/ O'()g(S,@)SdS—/ Nysds =0, 0<s<r, a<w<?0
o 0 0

The above relation, taking into account that

r2:2/ sds
0

becomes
0
0'0()(1”, 9) = g()g(f)) =N, — 2G(9), G(@) = / gr()(CO) dw (51)
From relations (47), (49) and (51), it follows that the stresses g;; are only depended on the angle 0, thus
O-ij(ra 9) :gij(0)7 iaj:rae (52)
The Airy stress function ensuring a stress field independent of » (Barber, 1992), is
M(r,0) = Toir* + Ty r*0 + Tyr? cos(20) + Th,r? sin(20) (53)

The boundary conditions are

0 0 0
0:06:7?07 6,{}<V,30>T1, J()O(”;?())Nz

0 0 0
9213:70; O'r()(n?o):Tﬂ» 000(7,7()):1\’/3
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The stress and displacement fields obtained from the stress function (53), are
6, (r,0) = g,(0) =20 + 2I'y,0 — 2"y cos(20) — 217, sin(20)
o,0(r,0) = g,9(0) = —I'y; + 2I'» sin(20) — 21, cos(20) (55)
o09(r,0) = goo(0) = 2I0) + 20,0 + 2I'x cos(20) + 21T, sin(20)

and

201, (r, 0) = r[(K — D)o + (k — 1)0I), — 2Ty 0820 — 21, sin 29}
(56)
24uup(r, 0) = r[ — 21 In7 + 2"y, sin 20 — 21, cos 20

where the unknown coefficients I'y;, Iy, I'» and Iy, are obtained from the boundary conditions (54) and
the stress field (55); hence

(N, + Ng) sin 0y + (T, — Tp) cos Oy

F =
o 4sin 0,
o= (TM + T/f) sin 60 — (Nl — N/;) (0] 00
or 2cos 0y (0 — tan 0y)
7T (57)
[y=--2—"F
2 4 sin 0,
- _ (Lt Tp)bo — (Na — Ny)
2 4cos 0y(0y — tan 0)
where

0y #mor2n and 0y #tanby (6 # 1.43x).
Using relations (55) and (57), the equilibrium conditions (48), (50) and (51) are fulfilled.

5. Multi-material isotropic wedge under distributed loading

This section investigates the conditions in linear elasticity under which the compatibility of displace-
ments among the interfaces of a multi-material wedge is succeeded, in order to ensure the variable separable
solution of the stress field.

In the previous analysis for the equilibrium of moments and forces, the mechanical properties of ma-
terials do not appear because of the continuity of the displacement field. Taking into consideration the
continuity, the compatibility of displacements and the self-similarity property, relation (4) is also valid in
the case of a multi-material isotropic wedge, so

hr,.(}") = h,.g(l") = l’lgg(l”) = I"ﬂ (58)

The solution of the multi-material wedge problem (Fig. 1) is studied for every sub-wedge considering that at
the interfaces OD; (1 <i<k — 1) act distributed normal and shear stresses with the same order of r, ful-
filling the self-similarity property

Ni(r) = ogo(r,0 = 0;) = hoo(r)geo(0;) = Nir”, N; = gep(0:), 1<i<k—1

59
T;(}") = O-r()(ra 0= 01) = hr()(r)gr()(gi) = Tirn7 Tl = gr'l](gi)a 1 glgk -1 ( )
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where the unknown coefficients N;, 7; will be determined from the compatibility conditions,
u(r,0,) = ul™V(r,0,), 1<i<k—1 (60)
ug)(r7 0,) = ugﬂ)(r, 0,), 1<i<k-1

In Sections 2 and 3 the cartesian system of the internal and external bisector of the wedge was finally used.
In the case of a multi-material wedge (Fig. 1), in order to avoid the reference in a general cartesian system,
we express the displacements in the local system of the internal and external bisector of every sub-wedge.
For this reason and in order to calculate the unknown coefficients N; and 7;, the system (60) is transformed,
using the relations, (22), (23), (38) and (39) for n < — 3 or (28), (29), (44) and (45) for n = 1 or (56) and (57)
for n = 0; and in the absence of normal forces relations (16) and (17) for n = —2, as follows

; O;-1 — 0; , 0; — 0; .
uf,’)(r,—lT):uﬁ’Jrl)(r,T“), 1<i<k—1

) 0, — 0, ; 0, — 0; .
e P (= RS

where
0p=o and 0, =p.

After the determination of N; and T7;, we may calculate the stress field of every sub-wedge in terms of the
local cartesian system of the internal and external bisector.

6. Applications

First consider the case of a bi-material isotropic wedge (Fig. 5). The sub-wedge (1) with mechanical
properties (ki, u;) occupies the sector with angle 0,(= —«) while the sub-wedge (2), with mechanical
properties (k», it,), occupies the sector with angle 0,(= f§). The external faces of the bi-material wedge are

yl\
- Np(r)=Npr
.\ \B
\ TD(I‘)=TBI‘
N @
K2.H2
B=082 /L‘/Tz/i
e
| : —
O\ | a=-8; r X
X1 ,.B1
Nad Ta(r)=Tqr
A Na(r)=Ngr

Fig. 5. A two-materials wedge under linearly distributed loads at its faces.
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loaded with distributed shear and normal loads of the form Cr (order of r, n = 1). Taking into conside-
ration the compatibility of displacements along the interface OI', from relations (60) it is obtained

ul(-n(r, 0) = u§2> (r,0), i=r0 (62)
and the unknown distributions of normal and shear stresses along the interface (OI'), are given by
R0 FoR
N(F) = Ny N, = 291 T Tl
! " RyOr+ OyRy
(63)
T(r)=Tr; T, =LeRv—FeRy
N T RyOr + OnRr
in case that
RyOr + OyRr £ 0 (64)
where
fo (i1 + 1) N, (k2 +1) ( Ng
Fp = - - T, : T
K 2sin 0; tan 0, + + 2sin 0, tan 0, i
w(x + 1) 2 —tan? 6, (2 + 1) 2 —tan’ 6,
= N, — 37, ; N, 3T
® ™ 2sin 0, tan 0, tan 0, + 2sin 0, tan 0, P tan 0, o0
1 K —+ l K> —+ 1
Ry Z—{ﬂz[(’ﬁ -3) ——2] — I [(K2—3)——2}}
2 tan” 0, tan” 0, (65)

_wa+1) o +1)

R
r tan 0, tan 0,
O — (ki +1) w2+ 1)
N tan’ 0, tan® 0,
1 3(k;+ 1) 3(ky + 1)
Or = 2 {'UZ [ tan® 6, +la+3)) — tan® 0, 2 +3)

Using relations (27)—(29) for the shear loading and relations (43)—(45) for the normal loading, the stress and
displacements fields may be obtained for any r.

As a second application consider a three-materials isotropic wedge with a parabolic distributed shear
and normal loading (order of », n = 2) along its external faces (Fig. 6). The sub-wedge (1) occupies the
sector 0; < 0 < f and has mechanical properties (ki, ;). The sub-wedge (2) occupies the sector 0, < 0 < 6,
with mechanical properties (x, it,) while the sub-wedge (3) occupies the sector a < 0 < 6, with mechanical
properties (i3, i3). In the case of the three-materials wedge the system (61) is written

(1) o ﬁ - 01 _ (2) 01 - 02
(=250 2 (25
(1) ﬂ - 91 2 Hl - 92
Uy ry——1F— = Uy r,
2 2 (66)
u(z) .o 61 — 02 _ u(3) - 62 —da
r ’ 2 r ) 2
0, -0 0, —a
(050 (1)

For the solution of the above system the coefficients Iy, Iy, I's» and I'y,, are determined from relations
(29) and (45) taking n = 2 for every sub-wedge, thus
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Yl

b= sin[3(0; COS[ZJ()] 4‘13_51?1/2]9/ 1=0) e
= sin[3(0;- Sm[gz()e] +3 510112]6’/ 1= 0)° e
bry = sin[3(0,- Sm[z;()e]j_l 3_519;12}9/ =0 e
By = sin[3(0;_ Cosé;]jr ;S?h)(ef‘ =0’ o
= sin[3(0,, ?r;(jj_‘:‘;g;)(gfl —0) e
By = sin[3(0,_1 Smg(i] -3 Seljn)(gil —0,)’ /bl

cos(0;_1 — 0;) j=1,2,3

79 Sin[3(0,, — 0,)] — 3sin(0,_; — 0,)
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with
Ty=1Ty, Ny=Ng, T3=T,, N3;=N,
and
0h=p, O:=a
Taking into consideration relations (67) and (68), the compatibility conditions (66) take the form

.—3 ; 4 i /i
=3 1) cos(0)-1 — 0)) ~ 14 sin(0, — 0, AT eosp2(0,.1 = 0)] - i sinl2(0,.1 - 0]

J J
= Li“ —3) {Fé’f’l) cos(0; — 0,1) + F'(’+1 sin(0; — 0+ )} - i {Fi’;’l) cos[2(0; — 0;11)]
it Kt
+ 'Y sin[2(0, - 9,+1)]}, j=12 (69a)
Ki+3 4
_g+3) [le) sin(0;_ — 0;) + 'Y cos(0,_ — 0 )} {F42 sin[2(0,, — 0,)] + I cos[2(0,_, — 0,)]}
K K
” 4 L
_ g3 [F(’“ sin(0; — 0;11) — 1“2(1’+l> cos(0; — BM)} +— {F&’;U sin2(0; — 0;11)]
:u/+1 A J+1
— 'YV cos[2(0, — Q,H)]}, j=1,2 (69b)

From relations (69a) and (69b) a linear system of equation is derived with unknowns N, N,, T} and 7. The
existence of solutions of the above system if its determinant is different from zero, ensures the variable-
separable form of the multi-material wedge stress field.

In a plane strain case if the angles at the apex and the mechanical properties of a three-materials wedge,
are

p—0,=n/6, K =160, u =26 GPa for the sub-wedge (1)

0, — 0, =m/6, Ky=1388, p, =239 GPa for the sub-wedge (2)

0, —a=mn/6, Kk3=176, u;==80 GPa for the sub-wedge (3)
then the linear system of (69a) and (69b), takes the form

0.9037; — 0.154N, + 0.256T> — 0.29N, = —0.346T; — 0.400N

0.15677 — 0.452N, — 0.2957; + 0.128N, = —0.4007; — 0.173Ny

0.1287; + 0.148N; + 0.2817, — 0.0854N, = —0.0607, + 0.069N,
0.295T7; 4+ 0.128N; + 0.2037, — 0.281N, = 0.1387, — 0.060N,

and for
T,=—1, N,=Ty=N;=1
the system (70) has the solution
7, =-0243, N, =1397, 1»,=0210, N,=1.238 (71)
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The stress and the displacement fields in the local system of every sub-wedge, are
a\l(r,0) = r*[-0.384 cos(40) — 0.828 sin(40)]
o'l (r,0) = r*[0.582sin(20) + 0.912 cos(20) + 0.384 sin(40) — 0.828 cos(40)] (72)
o\t (r, 0) = r*[1.164 cos(26) — 1.824 sin(26) + 0.384 cos(40) + 0.828 sin(40)]

3

uV(r,0) = 2—2 [—0.136 cos(20) + 0.2135in(20) — 0.128 cos(40) — 0.276sin(40)]

-

ul (r, 0) = 5510-4465in(20) + 0.699 cos(20) + 0.128 sin(40) — 0.276 cos(40)]

a? (r,0) = 1[0.840 cos(40) — 0.204 sin(40)]

aﬁf,)(n 0) = r*[1.002sin(26) + 0.102 cos(20) — 0.840 sin(46) — 0.204 cos(40)] (74)
ol (r,0) = r*[2.004 cos(20) — 0.204 sin(20) — 0.840 cos(40) + 0.204 sin(40)]

3

u?(r,0) = ;_8 [—0.187 cos(20) + 0.019sin(20) + 0.280 cos(40) — 0.068 sin(40)]

3
ul (r, 0) = 7”—8 [0.815 sin(20) + 0.083 cos(26) — 0.280 sin(460) — 0.068 cos(40)]

) (r,0) = r*[-0.396 cos(40) + 1.164sin(40)]

o (r,0) = r*[0.5345in(20) — 1.128 cos(26) + 0.396 sin(40) + 1.164 cos(40)] (76)
ol (r,0) = r*[1.068 cos(20) + 2.256 sin(20) + 0.396 cos(40) — 1.164 sin(40)]

3

u®(r,0) = lr@ [~0.110 cos(20) — 0.233 sin(20) — 0.132 cos(40) + 0.388 sin(40)]

7”3

160

The stress and displacement fields for the three-materials isotropic wedge are given in Figs. 7-11 for » = 1.

uff)(r, 0) [0.424 5in(260) — 0.895 cos(26) + 0.132sin(46) + 0.388 cos(40)]

7. Discussion and conclusions

The problem of the infinite multi-material isotropic wedge is studied in linear elasticity under normal and
shear distributed loading at its faces. The solution of the problem is proved to be self-similar and is ex-
pressed in a variable-separable form because of the geometry of the wedge and the form of the loading. In
the present work, a procedure based on the self-similarity property is developed for the analysis of the
infinite multi-material wedge, which allows any kind of linear elastic isotropic materials to be considered. A
computer code has been implemented for the calculation and the graphical representation of the dis-
placement and stress fields in any sub-wedge of the multi-material wedge. The tool developed has been used
to analyze the corner configurations that appear in a typical metal to metal or metal to composite joint
under the action of external distributed loads.

The proposed analysis gives the stress and displacement fields for mononymous load-distributions in
terms of the radius r of the polar coordinate system and for different values of the order » of r.
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Fig. 7. 100u,-diagram of the three-materials wedge for r = 1.
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Fig. 8. 100uy-diagram of the three-materials wedge for » = 1.
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Fig. 9. o,,-diagram of the three-materials wedge for r = 1.
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Fig. 10. o,9-diagram of the three-materials wedge for » = 1.
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Fig. 11. ogy-diagram of the three-materials wedge for » = 1.

A multi-material wedge under a polynomial distributed loading along its external faces may be
studied with the proposed theory using the superposition principle for every monomial-type of loading.
The proposed study does not investigate the type and the order of singularity at the vertex of a multi-
material wedge under normal and shear loading at its faces. It concerns the whole area of the wedge
except for the region at the neighborhood of the singular point. We focus on the possibility of de-
termining the stress and displacements fields in any plane multi-material wedge in the absence of body
forces, using the superposition principle for different loading cases fulfilling a variable-separable (self-
similar) solution.

From Figs. 7 and 8, continuity of the displacement field along the interfaces is observed as was expected
from the theory (Section 5). From Figs. 10 and 11, continuity of the o,y and a4y stress-fields along the
interfaces is also observed whereas for the o,, stress-field (Fig. 9), a discontinuity appears at the interfaces
due to different material properties. The variable-separable relations (self-similarity property) are applied to
any case of material combinations and to any case of order of r for the distributed loads at the external
faces (except the below mentioned special cases) while restrictions for the material properties are required in
the case of a multi-material wedge loaded by a concentrated force at its apex, in order to have a variable-
separable formulation (Pageau et al., 1994; Joseph and Zhang, 1998).

Our investigation in the special cases of the order of n (n = —1 for shear and normal loading and n = —2
for normal loading only) in a bi-material wedge and the study of a sandwich three-materials wedge, will be
the subjects of our future research.
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